

B.K. BIRLA CENTRE FOR EDUCATION

SARALA BIRLA GROUP OF SCHOOLS A CBSE DAY-CUM-BOYS' RESIDENTIAL SCHOOL

PERIODIC TEST-II 2025-26 CHEMISTRY (043)

Class: XI Time: 1 hour Date:07 .11.25 Max Marks: 25

Section A

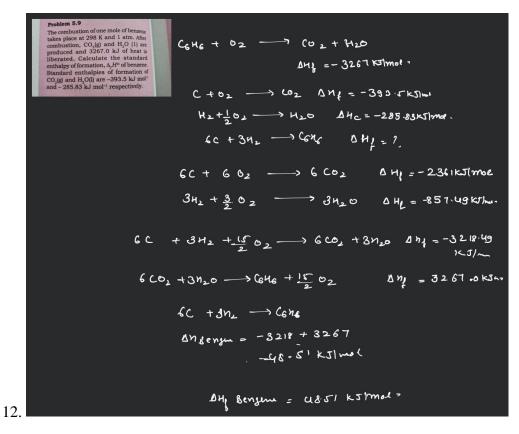
1. (b) Li 2. (a) H^+ ions. 3. (c) H_2O_2

4. (c) gas

5. (c)

Section B

- 6. (a) CuO is reduced and H2 is oxidised
- (b) Fe₂O₃ Reduced CO is oxidised
- 7. In the reactions given below, identify the species undergoing oxidation and reduction:
 - (a) H₂S oxidation Cl₂ Reduction
 - (b) 3Fe₃O₄ reduction Al (s) oxidation
- 8. Residual charge on atom and +6
- 9. From the equation $q = n C \Delta T$, we can say: At constant pressure P, we have $qP = n CP\Delta T$ This value is equal to the change in enthalpy, that is, $qP = n CP\Delta T = \Delta H$ Similarly, at constant volume V, we have $qV = n CV\Delta T$ This value is equal to the change in internal energy, that is, $qV = n CV\Delta T = \Delta U$ We know that for one mole (n=1) of an ideal gas, $\Delta H = \Delta U + \Delta (pV) = \Delta U + \Delta (RT) = \Delta U + R \Delta T$ Therefore, $\Delta H = \Delta U + R \Delta T$ Substituting the values of ΔH and ΔU from above in the former equation, $CP\Delta T = CV\Delta T + R \Delta T$


Section C

- 10. Step 1 find the O N Step 2 find the OHR and RHR
 - Step 3 balance electron by OH- ion Step 4 balance O by H2O

Step 5 balance electron by comparing both the equation.

- 11. Step 1 find the O N Step 2 find the OHR and RHR
 - Step 3 balance O by H2O Step 4 balance Hydrogen by H+ ion

Step 5 balance electron by comparing both the equation.

13.: (a) Exchange both energy and matter (b) Exchange only energy not the matter (c) Neither Exchange energy nor matter